# Beegraphy : exploring solar paths

This tutorial aims to facilitate the creation of a solar path, ensuring accurate determination of the sun’s position, orientation, and altitude. This precision is invaluable for architectural design, enabling architects to optimize building orientations for solar efficiency. Additionally, it serves as a tool for verifying the solar orientation of heritage sites.

This approach enables the precise tracing of solar paths and orientations throughout history. Various software tools and methods exist to determine the position of the sun at any point in the past, making it particularly valuable for archeoastronomy purposes.

We will use Beegraphy, the online Grasshopper for that.

Is this tutorial we will learn how to

• Retrieve environmental data
• Create a list and convert string to text, degrees to radians
• Convert polar coordinates to Cartesian coordinates
• Construct la curve by interpolating points
• Create and place a text
• Create a sequence to have a print a series of numbers at a specific location
• Create a loft and add colours
• Edit groups and component for further public use
• Testing a small simulation.

# ABITA+ GRASSHOPPER

## Historical background

The first version of Abita+ dates back to 2001. Concepts are, in the computer world as in other domains, concepts that are discovered and forgotten, then rediscovered in the belief that they are innovative or original. At the dawn of the 20th century, to explore architectural solutions, there were three ways. The first was to mimic analogical tools and methods. This is the virtual drawing board such as AutoCad for example. The intellectual process is the same as for hand drawing, it is only the ease of corrections, re- editing and duplication that make it a very productive tool. The second path, less known and somewhat forgotten, is that of declarative modeling. In this method, the idea is to start with the expected result and work backwards through the inductive chain.

# 3D isovists

In this tutorial, the idea is to explore the potential of Isovist for urban analysis. Isovist is the surface or volume of space visible from a specific point. This concept has been proposed by Clifford Tandy in 1967 and then redefined by Michael Benedikt. Isovists are very useful to quantify the perception of urban spaces such as opening, closeness, and also useful to define urban envelopes. Isovists help to with non-intuitive solutions for complex problems.

Now we want to do the same in 3D. We will use the Ladybug components. We will use the LB visibility percent. Continuer la lecture de Grasshopper, Urban Analysis, 3D Isovist